skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shalizi, Cosma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Implications draw on the history of transformative information systems from the past 
    more » « less
    Free, publicly-accessible full text available March 14, 2026
  2. We consider the question of whether thermodynamic macrostates are objective consequences of dynamics, or subjective reflections of our ignorance of a physical system. We argue that they are both; more specifically, that the set of macrostates forms the unique maximal partition of phase space which (1) is consistent with our observations (a subjective fact about our ability to observe the system) and (2) obeys a Markov process (an objective fact about the system’s dynamics). We review the ideas of computational mechanics, an information-theoretic method for finding optimal causal models of stochastic processes, and argue that macrostates coincide with the “causal states” of computational mechanics. Defining a set of macrostates thus consists of an inductive process where we start with a given set of observables, and then refine our partition of phase space until we reach a set of states which predict their own future, i.e. which are Markovian. Macrostates arrived at in this way are provably optimal statistical predictors of the future values of our observables. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Social media would still be a mess even without engagement algorithms. 
    more » « less
  4. A very popular class of models for networks posits that each node is represented by a point in a continuous latent space, and that the probability of an edge between nodes is a decreasing function of the distance between them in this latent space. We study the embedding problem for these models, of recovering the latent positions from the observed graph. Assuming certain natural symmetry and smoothness properties, we establish the uniform convergence of the log-likelihood of latent positions as the number of nodes grows. A consequence is that the maximum likelihood embedding converges on the true positions in a certain information-theoretic sense. Extensions of these results, to recovering distributions in the latent space, and so distributions over arbitrarily large graphs, will be treated in the sequel. 
    more » « less